what is complex number addition and multiplication

The addition of real and imaginary parts of the number is called a complex number
a complex number is the builder of explained math to different group algebra, Trigonometry, set theory
electronic, magnetics field, current measuring, DC and AC, construction building, etc.
basically, complex number in the form of a real number, imaginary number a + bi
if the real part is zero then the resultant value is imaginary
if the imaginary part is zero then the resultant value is a real number

complex number diagram is shown below 
CUBE ROOT OF UNITY PIWER ???


THE COMPLEX NUMBER PLAN SHOWN BELOW
complex plane👩
                                                     z = a + bi

where a is the real number and b is also a real number

                                                    I form imaginary unit number √ -1

                                                            can be a value of a = 0  or  and b = o

then the complex number in the form
  EXAMPLE:1
 5 + i ( 0 ) = 5 ( result real part of complex number)
  EXAMPLE: 2
 0 + 6 i = 6 i             ( imaginary part of complex no.)
 EXAMPLE:3 8 + 9 i = 8 + 9i             ( when non zero a and b )
 EXAMPLE: 4
  9 + √ -9 = 9 + √(-1)9     ( if we solve calculator result infinity)
  = 9 + i √ 9                 because i = √-1
 solve equation problem in math describe sign i
WHAT IS  "IOTA " AND POWER OF IOTA

COMPLEX NUMBER ( addition, multiplication )
if we have two complex number z1 = (x1 ,y1 ) = x1+iy1
 z2 = ( x1, y2) = x2 + iy
addition of comolex number

(1) ADDITION

  z1+z2 = (x1 , y1 ) + ( x1 , y2)
            = x
1 + iy1 + x2 + iy2
          = ( x1 + x2 ) + i ( y1 + y2 )
EXAMPLE
 z1 = 6 + 7i   ,     z2 = 8 + 9i
 z1+z2 = ( x1 + x2 ) + i ( y1 + y2 )
= ( 6 +8 ) + i ( 7 + 9 )
= ( 14 , 16 )

( 2 ) MULTIPLICATION 
multiplication of complex number

a complex number can be multiplied by any number a +bi we multiply simply any number ( natural, whole, integer, real, rational, irrational, real number ) with a complex number

EXAMPLE                      👉👉 PROPERTY OF COMPLEX NUMBER
 8 ( 1 + i )

  = 8     +     8 i     Where a = 8 is real number b = 8 is also a real
 iota is imaginary number

EXAMPLE

                        if we have two complex number Z1 = ( 5 +8 i ) Z2 = ( 4 +9i )
 Z1 *Z2 = ( 5 +8i ) * ( 4 + 9i )

 = 20 +45i + 32i +72 i2

 = 20 + 77i + 72 ( -1 )
    where i =√ -1 , i² = -1
 = 20 - 72 + 77i
 = -52 + 77 i

SOLVE SOME QUESTION TO PRACTICE 0f ( addition and multiplication )

Q. 1
 Z = 3 ( 8 - 4 i )
 Z =?
 A = 24 -12i
 B= 24 + 12i
 C = 10 - 12i ( answer in comment box )

Q.2
 Z1 = ( 7 - 2i )     ,    Z2 = ( 1 + 9i )

 Z1*Z2 =?
 A = 20 +61 i
B = 25 + 61 i
 C = 7 + 18 i             ( answer in comment box )
Q .3
 if     Z1 = ( 0 + 9i )    ,     Z2 = ( 6 +0i )
Z1 + Z2 = ?
 A = 0 + 6 i
 B = 6 + 0i
 C = 6 + 9i         ( answer in comment box )
 


RELATED POST 
what is hyperbola 

Comments

Popular posts from this blog

WHAT IS IOTA AND POWER OF IOTA

REAL NUMBER PROPERTIES