LAW OF DITRIBUTION (LEFT AND RIGHT) IN COMPLEX NUMBER
we have three complex number Z1,Z2,Z3 = (a₁+b₁) , (c₁ ,d₁ ) , (e₁ , f₁ ) ∈ ℂ
THEN law of distribution addition over multiplication
(a₁, b₁) .[ (c₁ ,d₁ ) + (e₁ , f₁ )] = (a₁, b₁). (c₁ ,d₁ ) + (a₁, b₁) .(e₁ , f₁ )
L.H.S = (a₁, b₁) .[ (c₁ ,d₁ ) + (e₁ , f₁ )] LEFT IAW OF DISTRIBUTION
= (a₁, b₁) ( c₁ +e₁ ,d₁+ f₁ )
multiplication property of two numbers in complex number
= [a₁ ( c₁ +e₁) - b₁( d₁+ f₁) ,a₁ (d₁+ f₁ ) + b₁( c₁ +e₁ ) ] by multiplying
= a₁ c₁ +a₁e₁ - b₁ d₁ - b₁ f₁ , a₁d₁+a₁ f₁ + b₁ c₁ +b₁ e₁......................1
R.H.S = (a₁, b₁) . (c₁ ,d₁ ) + (a₁, b₁) .(e₁ , f₁ ) RIGHT LAW OF DISTRIBUTION
multiplication property in complex number
= (a₁ c₁ -b₁d₁ , a₁d₁ + b₁c₁ ) + (a₁e₁ - b₁ f₁ , a₁ f₁ + b₁ e₁ )
by law of addition in complex number
= a₁ c₁ -b₁d₁ +a₁e₁ - b₁ f₁ , a₁d₁ + b₁c₁+a₁ f₁ + b₁ e₁ ..................2
by result (1) and (2) R.H.S = L.H.S thens law is proved
LEFT IAW OF DISTRIBUTION = RIGHT LAW OF DISTRIBUTION
EXAMPLE
if Z1= 1+9ι Z2 = 3 + 0ι Z3 = 0+4ι then the law of distribution Z1.( Z2+Z3) = Z1.Z2 +Z1.Z3 L.H.S Z1.( Z2+Z3) =( 1+9ι) .( 3 + 0ι) +( 0+4ι ) =(1+9ι) .( 3 +4ι ) =3-36 , 4ι +27ι = 33 ,31ι
R.H.S Z1.Z2 +Z1.Z3 = ( 1+9ι) .(3 + 0ι ) + ( 1+9ι ).(0+4ι )
=(3-0 ,0ι +27ι) + ( 0 - 36 , 4ι - 0ι )
= (3 ,27ι) + ( -36 , 4ι )
= 33 ,31ι
R.H.S = L.H.S this prove the operation of distribution law
Comments
Post a Comment